在百米加速时,踝关节跖屈会通过Windlass机制将跖屈力转化为前冲力。
当脚趾离地时,跖趾关节背伸,使得足底筋膜被拉紧,就像拉紧的弓弦一样。
就比如苏神现在。
这种拉紧的力量通过足底筋膜的力线传导,从足跟传递到前足,进而产生一个向前的分力,推动身体向前运动。
这时候。
苏神强力蹬伸。
足弓刚度指数(AI)提升至3.8N/mm。
这意味着他现在足弓在受力时能够保持较好的刚度和稳定性。
有效地将力量传递到地面,为身体提供更好的支撑和推进力。
能做到这样,不是玄学。
这是科学。
因为足底筋膜是连接跟骨和跖骨的纤维组织,它在维持足弓结构和传递力量方面起着关键作用。
Windlass机制的原理基于足底筋膜与跖趾关节之间的解剖学关系。
当跖趾关节背伸时,足底筋膜的张力增加,这种张力通过筋膜的纤维结构传递到整个足弓,使足弓升高并变得更加坚硬。
足弓刚度的增加有助于减少足部在着地和蹬地过程中的能量损耗,提高力量传递的效率。
在百米加速区,运动员需要快速地将地面反作用力转化为向前的推进力。
足底筋膜的力线传导和足弓刚度的变化刚好……能够有效地实现这一转化。
为运动员提供持续的加速动力,从而提高运动成绩。
当然现在筋膜的说法都不一定有。
更不要说再激活足底筋膜力线传导。
认知都没有。
更不要说还要跨越运用到运动实践中来。
很抱歉。
现在这一波科学技术。
只有苏神掌握。
也只对他敞开大门。
所以……
很遗憾。
博尔特和卡特的确是下了功夫。
也做了各种科学突破的尝试。
只是。
苏神这边的。
更加科学。
更加深入。
更加高深。
那句话怎么说来着。
对了。
任何东西都分三六九等。
人不例外。
科学。
也不例外。
你可
本章未完,请点击下一页继续阅读!